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Abstract. The spectrum of a bosonic string is affected by interaction processes where the 
string undergoes splitting and rejoining. For low-lying states, it is possible to construct 
effective Lagrangians and Hamiltonians which describe the effects of the interaction, at 
least in the ultraviolet limit, i.e. when the splitting and rejoining process proceeds very 
rapidly. The derivation is performed by considering the partition function of the system 
consisting of an open bosonic string and integrating some of the ultraviolet degrees of 
freedom. 

1. Statement of the problem 

A well established approach to dealing with quantum systems of many degrees of 
freedom is the separation of those degrees which are directly involved in the particular 
problem under consideration from those whose presence manifests only in an indirect, 
although significant, way. When the degrees of freedom can be characterised by a 
proper frequency, this very general attitude gives rise to a separation of lower frequen- 
cies, directly involved in the problem, and higher frequencies, whose effect is due to 
their coupling to the lower ones. A celebrated example of this procedure may be found 
in the effective Lagrangian of Heisenberg and Euler, describing the photon-photon 
interaction mediated by charged massive particles [ 1,2]. In this case the separation 
between higher and lower frequencies is suggested by the general features of the 
dynamics, because the non-existence of massless charged particles provides an intrinsic 
separation; it is given by the mass of the lightest charged particles. 

The general procedure has, however, a wider field of application and the elimination 
of the higher frequencies, so that the remnant of their existence survives in an effective 
interaction among the lower frequencies, is an essential ingredient of the Wilson 
treatment and applications of the renormalisation group, both in quantum field theory 
and in many-body theory [3]. Here the same approach is extended to string theory. 
A free bosonic string is a system of uncoupled oscillators, so if we eliminate the higher 
frequencies no effect on the lower frequencies will be found, but as the strings interact, 
by splitting and rejoining, then the oscillators become coupled and the higher frequency 
dynamics reflects in a non-trivial way on the lower frequencies. In order to study in 
detail these effects a well defined system is chosen. The system is an open bosonic 
string, described in a light-cone gauge so that attention is paid only to the transverse 
dynamics [4]. In this system there is no natural boundary between high and low 
frequencies, since there is a unique dimensional scale, so the boundary must somehow 
be set up arbitrarily: the idea is to select, among the processes of splitting and rejoining 
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which give rise to the string interaction [5, 61, ones that last a short time only and to 
look at their effects on the lower frequencies; in other words it is required that the 
time in which the string remains split is short with respect to the period of the oscillations 
which are considered. It is evident that the light-cone gauge, besides providing a very 
important technical simplification, making the action quadratic, also gives conceptual 
transparency because of the possibility of identifying the T parameter with the time 
and  the (+ parameter with the longitudinal momentum (up  to a dimensional constant), 
making clear the conservation of this quantity in the interaction. There are also 
unwelcome properties of this gauge: the covariance is lost and, for the open string 
case, a four-string interaction should be added [ 6 ] .  The approach is to consider the 
present treatment as a model, in the hope that an  understanding of its behaviour will 
allow a generalisation into a covariant treatment. 

It is well known that the idea of getting an  effective action, or  Lagrangian, for the 
low-lying states of a string is by no  means a new one and has received much attention 
for a long time. The most common approach has been to fix external low-lying states 
and then to evaluate the interaction induced among them, both by virtual states of the 
same level and  also by higher states which have been pushed very far by the small 
slope approximation [7]; such a procedure has been recently considered also in string 
field theories [8]. Here the idea is different; the specification of the low-lying states 
will be done only at the end so, within the limitations inherent in the treatment, the 
result will hold for any arbitrary set of states, provided we look only at the effect of 
those virtual states which lie higher than the chosen set. One is really looking at the 
ultraviolet effect, i.e. just to the contribution of the states that are pushed far away by 
the small slope approximation. In this sense the treatment could be considered 
complementary to the more usual one; what in turn is lacking is the effect of the virtual 
states lying on the same level as the external ones. 

The layout of the paper is as follows: after an  outline of the general procedure, 
the construction of an  interaction term, by integrating over higher frequencies is carried 
out. It is explicitly shown that, in the limit of fast splitting and  rejoining processes, a 
local effective Lagrangian can be derived, starting from the general partition function. 
External states are not introduced at  the beginning but once an  effective Hamiltonian 
for the interaction has been derived, then its effects on the states of a free string may 
be studied. 

2. Outline of the general procedure 

The programme stated in the introduction is now put in a form which is made more 
and more quantitative. With a notation which is still very symbolic the task is to 
perform this sum: 

z = exp( - d I )  
I 

and the sum is performed over the two-dimensional surfaces, embedded in the trans- 
verse space; the Euclidean version of the formalism will be used throughout the paper 
and the dynamics is formulated in first quantised version, not in string field theory. Z 
is the partition function; as already explained, external states are no’t considered. 

The sum can be organised in a more systematic way by considering, firstly, the 
string propagating freely between some initial final ‘time’ parameters (0 and p ) ,  
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Figure 1. The parameters vo, T~ and b which define the process of breaking and rejoining 
of the open string. 

secondly, the string which splits and rejoins once and, thirdly, the same process 
occurring twice and so on: 

The usual formulations of the interacting string theory state that the action is the 
same in the different addenda, but what varies is the functional space over which the 
sum must be performed [ 5 ] .  This statement is kept also in building up string field 
theory, where the interaction term is also intended to describe the splitting and rejoining 
of the string [ 6 ] .  The weights A are, for the moment, only a sort of book-keeping 
introduced for future convenience. 

Specifying better the content of (2.1) one can write 

.=I 9 x  e-“+A [ da, dTO J 9 x  e-.‘+. . . (2.2) 
CO(0,P 1 C, ( 0 , P  ; wo I 70; h 1 

where CO(O, p )  is the space of functions of U and 7 ( O s  u s  77, 0 c T s p ) ,  which have 
first derivatives both with respect to a and to r, and have such boundary conditions 
that they admit an expansion in series of cos la, I = 0,1, . . , , so in particular x’(0) = 
x’( 77) = 0. 

c, is defined as follows: let r ’ =  .ro-ib, T ” =  T o f i b ,  then for 0 s  T C  T’ and T”< T <  /3 
the functions behave as in Co. When T’ < T < T”, the functions are, in general, discon- 
tinuous in U = a. and the point a, acts as an endpoint, so there are two families of 
functions, which may be expanded respectively in series of cos( l.na/a,)(O S a < col 
and cos[ l ~ (  77 - a ) / p O ] ;  po = 77 - U,, , 

With these definitions, which will be explained in more detail and elaborated in 
what follows, a formal manipulation is performed, using the decomposition with respect 
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to the time parameter of the Feynman integral: 

Now, the integral in brackets reconstructs the usual integral over CO which does not 
depend on ao, and the rest, denoted by 9, is the expression we are looking fort: 

{ da, { d.ro 9 x  e-." = { e-& { d a o  dTO 9 [ x (  T'), x(T"), a,]9x. (2.4) 
CO(0, 0 )  

For small values of the parameter b, one writes also ~ [ x ( T , ) ,  X ( T , ) , .  . . , 6, vol. 
Furthermore, as will be shown, it is possible in this limit to extract a leading local 

term: 9+ F [ x ( T ~ ,  ao), X(T, ,  go), . . . ; b ] .  
So the presence of a different functional space (C,) has been transformed into the 

presence of a multiplicative factor in the integrand, which is now defined over the 
ordinary functional space (CO). Since the splitting can be expressed locally we can 
think that the presence of two breakings will not disturb each other and the third 
addendum in (2.1) will produce just the square of the factor E As the breakings are 
indistinguishable a factor o f f  is introduced; taking this idea further one can foresee 
that n splittings will produce a term F " / n !  and so one can sum the addenda (including 
the no-splitting) and get an overall multiplicative factor exp[A J ( d a  dT F ) ] .  Writing 
the usual expression for the action ,d = d a  dT L, the procedure yields, in this approxi- 
mation, a sort of effective Lagrangian: 

Le, = L - AF. (2.5) 

This final procedure is essentially the same as defining the grand canonical partition 
function of a non-interacting gas. The limit of small b is relevant because what really 
matters is that the overlapping in T of two breakings is unlikely, so the first possibility 
is that we have to work with a diluted one-dimensional gas; it will be shown (see the 
appendix) that the locality in a yields a sounder foundation for the exponentiation. 

f The idea of calculating the effect of the oscillations between some given boundary conditions, taking away 
the effects of oscillations between different boundary conditions, is borrowed from the treatment of the 
Casimir effect [9] and provides an ultraviolet regularisation. 
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3. Determination of the interaction term 

In this section the detailed calculation of the factor 9 of equation (2.4) is performed. 
According to the previous discussion we have 

The functions must satisfy a given boundary condition at T' and r" and at U =  

0, U,; U = a,, T ;  U = 0, T,  respectively, Setting T = r '+ bu the functions allow the 
following representations: 

x = x,(l - U )  +XfU + 2  

y = y,(  1 - U )  + y,u + p 
z = z,( 1 - U )  + ZfU + i 

0 s  u s  7r 
0 s U s U 0  

U, s U s T 

(3.2) 

where x, = X( T ' ) ,  xf = (7")  and so on. The 'tilde' functions are zero at r' and T" (U = 0, 1). 
x, and xf are assumed to be given and they enter in the integral of (2.4). y ,  and z, 
must coincide, within their domain of definition, with x, ( a  = i, f )  except for a boundary 
condition. Explicitly, this condition can be implemented as follows: 

(3.3a) y a  = vo+C 71 c o ~ ( l ~ ~ I u 0 )  
I 

Since xb exists in general, the representations give yb = xb, but at U = go we have 
that yb = 0, while xh # 0. This fact reflects on the second derivative of y ,  which has a 
&like singularity in a, (strictly speaking, only the left derivative exists). The coefficient 
of this 8 singularity is -x'(uo) because this is the amount of the discontinuity of the 
first derivative of y. Sometimes the following notation will be used: 

y : ( u o ) =  lim y : ( u )  
U-00 

=y:((.)-xh(c+o)8(c+-uo) us uo. (3.4) 
With obvious changes the same can be said about the function z,, which will exhibit 
a 8-like singularity in its right second derivative at uo: 

zk(uo)= lim zk(u) 
n-rll 

a:z, (U) = ZI: ( U )  + xb (uo) 8 ( U  - uo) usuo.  (3.5) 
In order to perform the functional integration, a basis on which to expand the oscillating 
variables is required: 

Xnpn(u) 

Y" = C Ynpn ( U )  

;=czflcpfl(u) 

n 

n 

n 

(3.6) 

with p,(O) = pn(l) = 0. 
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The normalisation of the basis affects the result of the functional integral which 
depends therefore on an overall normalisation condition. A very reasonable require- 
ment is $+ 1 for b + 0. This requirement is satisfied if one takes the normalisation 
condition 

Jo' a u Q m  a u Q n  du = bam,n (3.7) 

which gives 

pn( U )  = &%( n.ir)-' sin m u .  

Now we are in a position to calculate, using equations (3.2), (3.6) and (3.7), 

(x: - ( -  1)"Xi) 
=t{ f [ ( x : + - i i X I 1 ) + X : -  b2 

n = l  n r  n 2 r 2  

+~b(X~2+X:X(-+X;2)+ (l/b)(Xf-Xi)2 . (3.8) I 
Using the condition that Xk and x i  must be zero at U = 0, 7~ some partial integration 

can be performed and the following expression is obtained: 

where we have defined the operator 

K[,"' = 1 - (b/ m ) 2 d t  
the external source 

and the term independent of X :  

S["] = fb(xi2+ x ~ x ; +  xk2) + (xf-  Xj)2/b. 

( 3 . 1 0 ~ )  

(3.10b) 

(3 .10~)  

In exactly the same way one can calculate the corresponding expressions for 

9=4 ( j f2+y '2 )  dT % = l  ( i ' + ~ ' ~ )  d r  1;' 2 1: 
the operators Km appearing in 9 and % have the same form as in ( 3 . 1 0 ~ )  but for the 
substitution of rr by a,, and po,  respectively; the terms J and S are modified in an 
obvious way. The terms S are independent of X ,  Y and 2, so they do not enter in the 
functional integration; they just give rise to constant factors which in the definition of 
9 appear, on the whole, as 

By construction and definition of y o ,  z, it turns out that SCy1  and S['] coincide with 
S["] in their domain of definition in U. There can be a difference at the point vo, but 
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since only first derivatives are involved there is no room for S singularities, the difference 
in the exponents gives zero and thus @ = 1; so in practice one can simply drop the 
term S["]  in (3.9) provided one does the same in the corresponding expressions for y 
and z. 

The next step is to write down the Green function of the operator K,. Owing to 
the boundary condition implied in the expansion (3.6) and (3.7) the role of the 6 
function is played by the function 

1 2  
D["I( U, U ' )  = - + - 1 cos lu cos Id 

IT TI 

so that the Green function, defined by K[,"]G[,"] = D["] is 

1 2  1 
7~ IT I l + ( l b / m )  

G[,"](u, d ) = - + - C  cos la cos la' 

(3.11) 

( 3 . 1 2 ~ )  

and in a strictly analogous way we have that 

(3.12 b) 
1 2  1 
uo uo I l + ( l b / u o n )  

1 2  1 
Po Po l+( lb/pon)  

G?'(u, u')=-+-C 2 cos(lITa/u,) COS(ZITU'/U,) 

GPI(u,u')=-+--C COS[ ZIT( IT - u ) / P ~ ]  COS[ ZIT( IT - U ' ) /  pol. (3 .12~)  

The Green function can be expanded in powers of b2,  for instance from equations 

(3.13) 

We are now ready to calculate the functional integrals appearing in the definition 

( 3 . 1 2 ~ )  and (3.11) one gets 

G[,"] = D["] + (b /  m)*a:D["] + . . . . 
However, in some cases the closed form of G will be explicitly needed. 

of 9 with the result: 

9= / BYn exp( - I," 9 d u )  / 9.2, exp ( - 1: 3 du)  
n .[I 9X,,exp( -/:%da)]-' 

=n (det K[,"]/det det K[nZ1)'" 
n 

The determinant factor is calculated as usual: 

(In K[,"]-ln K[,yl-ln Kyl )  

In Kn = -(b/an)2a;-f(b/an)4az-.  . . 

(3.14) 

(3.15) 

where a = IT, uo, po, respectively, for [XI, [ y ] ,  [ z ] .  The sum over n can be performed 
and gives 

C l n  K , = - B ( b ~ ~ / a ) ~ a $ - & ( b . r r / a ) ~ a ~ -  . . . .  (3.16) 
n 
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At first sight we find a trivial divergence in Tra i ,  but we can apply a common 
regularisation, remembering that for the three cases (x, y ,  z )  the wavenumber is respec- 
tively proportional to l / T ,  l/ao, l / p o .  So a common regularising procedure can be set 
up: 

1'" + 1'" exp(-pl/a) =(&/a,) ' " ( :  tanh p/2a -$) ( 3 . 1 7 ~ )  
I I 

and the regularising parameter must go finally to zero. 

and the following expansion, therefore, holds [ 101: 
Since n > 0, the constant term -+ can be dropped, the remaining term is odd in p 

f tanh p / 2 a  =-+ f f m  czm+, (!!) 2m+1 
P m=O 

(3.17 b) 

Performing the subtraction implied in (3.15) in the limit p + 0, only the singular term 
survives because we always take an even number of derivatives (see equation (3.17u)), 
while the powers of p are always odd (see equation (3.17b)). So we get in the limit, 
for the term a t ,  

-? b2 [ T3-( ; )2a+J2pi]  =o. 
3 P  

(3.18) 

The same happens for the higher terms because the diverging parts compensate while 
the finite parts go to zero; in conclusion it results thatt 

A =  1. 

In calculating the part containing the source terms J explicit use is made of the idea 
that b is small, and so, whenever possible, the expansion of equation (3.13) will be 
used. When considering the x term there are no problems with the second derivatives 
a t J  = J" and we can write a factor 

(3.19) 

According to the definition (3.10b), the first term in the exponent is of order b3 and 
the second is of order b5. 

For the y term we must take into account explicitly the property of d:JLy1 as in 
(3.4) so that the following expression is produced: 

e x p [ i F  ( j [J~.~I"G[,YIJ[ ,YI"-J[ ,XI ' (~~)G[,Y~((+~,  a),~"]" 

-J[J]"G[Yl ,, ( (+ , ao)J[,X1']  do+J[,X1'(ao)G[nY1(a0, a,,)Jrl'(aO))], (3.20) 

There is an analogous expression with some change of signs for the z term. 
Collecting all the terms in b3, using the expansion of the Green function we get 

+ [2J[,"1'(ao)Jy"( P O )  - 2Jr1,(a~)J~1,1,,(a0~~] 

t See the appendix for further consideration on the method of calculating A. 
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but J[ '] (and J"]') coincide with J"] in their domains of definition and therefore the 
whole coefficient of the term in b3 is zero; the next contribution, of order bS, will not, 
in general, compensate. 

We are now left with the terms that are local in go. In this case the contribution 
from the y and the z terms simply add together; out of expression (3.12b, c )  we get [ lo]  

G[n4l(gor a,) = (.irn/b) cotanh(Tna,/b) 

Gk l (ao ,  a,) =(Tn /b )  cotanh(mp,/b). 

For b + O  the two expressions merge into 

,[,'I = Gy) == Tn/b 

to the exponentially vanishing terms so, for this particular contribution, which is leading 
for b + 0, it results that T2 = E n  ( m/b)(J[,"]'(uo))*, which is of order b2. 

Using the expression of the sources J [ " ]  and performing the sumt over n 

T ~ ( u , )  = f ( 2 ~ ) - ' 1 ( 3 ) b ~ [ 7 ( ~ : +  xi)*+ (x: - x ; ) ~ ] / v ~ .  (3.21) 

This expression represents the result we were looking for, and we can in fact write: 

9=eT2.  

Remembering that, in getting the expression for T2 the terms discarded were exponen- 
tially small (of the type (e-'"))/b) and that the terms in b3 compensate to zero, we 
conclude that the first correction to T2 should be of order b5 and probably quite 
complicated and, in particular, non-local in go. 

4. Effective Lagrangian and Hamiltonian 

Within the scheme of considering the limit b+O it is useful to elaborate further the 
expression of T2. With the symbol x, = x(T,) we write 

[ 7 ( ~ i ' + ~ ; ) ' + ( ~ ( - ~ j . ) ~ ] + 2 8 ~ ~ ~ + 7 b ~ ~ h x ~ +  b2ih2 

so that we keep in T2 terms of order b2 and b4. 
Now we have for the interaction term an expression local both in (+ and in T and 

we can, therefore, proceed to the exponentiation, in order to take into account the 
possibility of many 'non-interacting' splittings and we get, therefore, a term 

exp(A J d ~ 0 d 7 0 e x p ( ~ 2 ( ~ 0 ,  7,)) . ) (4.1) 

It is anyhow consistent with the approximations to expand the exponential inside the 
integral, to order b4. In so doing a partial integration in T (with the elimination of 
the total derivative) unifies the term in x'2 with the term in x'x'. 

The overall result can be expressed by introducing an effective Lagrangian 

L,fi = Lo - A Lint 

(4.2) 
7 3 

4T 8~ 
Lint= 1 +T 5 ( 3 ) b 2 x r 2 - 7  

t With standard notation [lo] l ( 3 )  = Z  K 3  = 1.202.. . . 
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Up until now we have worked with the Feynman path integral formalism and in 
Euclidean formulation. 

Since in Lefi we have only quadratic terms in x and x’, if we perform back time 
rotation and simultaneously define the Hamiltonian in the usual way, the expression 
of equation (3.1) yields the Hamiltonian density, so that starting from (4.2) we have 
an effective interaction Hamiltonian 

It is also possible to set up the standard quantisation procedure and study the effect 
of these new terms on the spectrum. 

First of all there is a finite numerical term -AT,  which shifts the zero-point energy. 
The other terms give rise, together with the unperturbed Hamiltonian, to the following 
expressiont : 

&,, = 4 [( 1 + c ~ ) x ”  + X2 - c ~ X ’ ~  + c ~ x ’ ~ ]  dw. (4.4) I 
The first terms can be diagonalised exactly leading to the spectrum 

2 1/2  
q 2 ,  = c [(I  + c1)/(1- c2n ) I  na :an. 

n 

We see that the term c1 (which is of order b 2 )  simply changes the spacing of the 
spectrum, the string tension, while the term c2 (which is of order b4) partially breaks 
the degeneration of the spectrum: in fact, a state a:a:i) is no longer degenerate with 
a:]). It is explicitly seen that the expression for X(2, is inconsistent for a too high 
value of n ;  this reflects a very general fact that, if the frequencies which have been 
integrated over (which are of the order 1/ b or higher) are not much higher than the 
frequencies of the physical states which we look at, we shall find a lack of unitarity 
which shows up as a non-Hermitian expression in the Hamiltonian. Taking into account 
those limitations it would be more realistic to write 

x(*,,,=c [(l+cl)1’2+~c2n’]na‘,a, .  
n 

(4.5) 

The effect of the third addendum, the anharmonic term, is, at first order, to produce 
a further breaking of the degeneracies of the unperturbed spectrum. Up until now the 
vectorial properties of transverse degrees of freedom have never been taken into account 
explicitly, for notational simplicity, but more precisely it should be written, denoting 
by d the number of transverse dimensions, 

Being a perturbation, its action can be studied on the unperturbed states and, since it 
involves the rotation degrees of freedom in d dimensions, a general treatment is 
complicated, even though straightforward in principle. A particular example, therefore, 
will be worked out. Two states of the type a:a:l) will be considered, a trace state 
It )  = (a:)k(a:)kl)andatracelessstate Is)= vJk(a~)](a~)k1) ,  with vJJ = 0, bothnormalised, 
of course. The perturbation X((3)  cannot connect these two orthogonal states and the 

+ The values of c, can be read off from (4.2); they are all linear in A. 
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relevant matrix elements are therefore the diagonal ones. We start by looking at the 
part of %?(e,,, which is built up with a ,  operators: moreover only the part containing 
two creation and two destruction operators is relevant. In conclusion, we extract out 
of the perturbation the term 

3 
1 6 ~  

%?(3,e*)=- c3[(2a:ak+d+1)’-1+2a:a:a,a,]. 

The mode index ‘1’ is understood. Now while the first two addenda give the same 
matrix element in It), we have for the third term that 

( t (a ;a~a,a, ( t )  = 2 d  
(sla;a:a,a,ls) = 0 

so the splitting between the states It )  and Is) induced by X((3 ,  is 

A E 3 =  (3/4.ir)c3d. 

A more complicated splitting pattern can be produced looking at higher states?. 
Besides these shifts, state mixing is also produced. For instance, there is a mixing 

between the It) state and the vacuum state; it is clear that more generally the vacuum 
state can get contributions from the two-particle and four-particle scalar states, already 
at first order. 

In dealing with the effective Hamiltonian the parameter A acts as a coupling 
constant, but the time parameter 6 plays an analogous role. Until now 6 has been 
taken as a constant, but in fact it could also be allowed to vary, below a fixed limit. 
In this case the expression (2.2) could be replaced by 

Following throughout the derivation and the changes induced in this way up until 
equations (4.2) and (4.4), we see that trivial modifications occur. The renormalisation 
term becomes -Ab,,,,T and the substitutions b2+fb3 , ,  b4+;6&, are required; the first 
neglected term is now of order 6%. 

At first sight it appears that 6 acts as a coupling constant but looking at its original 
meaning we can call it, and especially L I ~ ,  a sort of cutoff. It has in this treatment the 
role of an infrared cutoff because the effect of interactions lasting longer than 6,,., is 
neglected. The parameter A could also be described as a coupling constant; its main 
role is, however, to be a normalisation factor, related to the integrations over the 
parameters describing the splitting and rejoining of the string, both numerical (ao, T ~ ,  b )  
and functional ( X ,  Y, 2). No difficulty arises setting A = 1, but one must remember 
that this choice is just a particular normalisation of the integrals, not the elimination 
of a parameter which appears to be free, but for the limitation of being real and positive. 

5. Conclusions 

The main result of this investigation is the construction of an effective action and then 
an effective Hamiltonian, which represents, in the functional space of the free string 
and in a well defined limit, the effects of the splitting. The effective Hamiltonian gives 
rise both to a distortion in the spectrum and to a coupling among the modes; in this 

t Also in states like 11) and Is), operational structures like a: . aza: ’ a ,  give non-zero contributions. 
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respect the result is qualitatively different from what happens in the prototype Euler- 
Heisenberg Lagrangian: for an interacting string the dynamical system is more compli- 
cated, having infinitely many degrees of freedom, but it is also unique in the sense 
that the loops have the same constituents as the possible external states. It happens 
that the interaction among the system as a whole, i.e. the strings, produces an interaction 
inside the system, the coupling of the modes, besides the distortion of the mode 
spectrum. With the definition assumed in performing the functional integrals, no 
ultraviolet divergence has been found. The results stays quite finite in the limit b + 0, 
although it is not analytical for b = 0, because exponentially vanishing terms are 
produced. The reason for this absence of ultraviolet divergences is found in the fact 
that the ultraviolet excitations for the interacting case tend to become more and more 
equal to the free case excitations as the frequency grows. Within the model some 
problems still remain open, in particular the question of the possibility of exponenti- 
ation if further terms, non-local in a, are taken into account. A more conceptual point 
concerns the role of the parameter A, which is strictly tied to the normalisation of the 
integrals used in defining the interaction term 9. It must also be noted that only planar 
configurations of the evolution surface, that go into the free-string surface, when the 
duration of the splitting goes to zero, have been considered, disregarding all more 
complicated topologies that can be produced in the general evolution. 

A question that also arises is whether some renormalisation is required. The need 
for renormalisation is independent of the presence of infinities, and it could be required 
even if only finite quantities appear. There are two conditions which appear natural; 
each of them can be satisfied but not both together. The first is that there is no shift 
for the zero-point energy, i.e. for the intercept we still have a0 = 1. This condition is 
equivalent to asking that for b + 0, 9+ 0, while in the formalism presented in this 
paper 9+ 1. The other possibility is that the first-level states, the ‘photons’, remain 
massless; this request can be implemented by another, b-dependent, renormalisation 
of the intercept. 

This second kind of renormalisation condition is suggested by the attempt of 
comparing the procedure presented with other kinds of effective actions which have 
been proposed. In particular, a very detailed treatment is available for the effective 
action of the first levels of the open string [ l l ] ,  but not only the treatment but also 
the starting point are very different. In the references quoted the level one is singled 
out of the rest and treated as a massless field, the other degrees of freedom are integrated 
over, and so the outcome is an effective interaction among massless particles. Higher 
states are not dealt with explicitly so that the question of the relative shifts or splitting 
of the levels cannot be asked. On the other hand the result is exact (there is nothing 
like the b parameter), it is covariant and can be used to describe the scattering of 
massless particles. 

The treatment shown in the present paper applies to static properties of the spectrum, 
and not to scattering processes, since the basic tool is the partition function. It also 
refers to higher levels, but it is never complete since it depends on b. In conclusion, 
the treatment appears more complementary than alternative and there is no region 
where a quantitative comparison can be set up. 

The really relevant task is, however, the extension of this kind of treatment, where 
no special role is played by the massless levels, to a covariant formulation, perhaps 
in the form made fashionable by Polyakov [ 1 I ]  in order to have a quadratic action to 
start with. Here a major problem is expected to arise from the redundancy of the 
variables which are not in one-to-one correspondence with the physical degrees of 
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freedom [4, 121. Of course, parallel to this extension, the inclusion of fermionic degrees 
of freedom could also be attempted. 

Appendix 

In this appendix some further arguments concerning points previously treated are 
presented. The first concerns the exponentiation of the interaction; it is in fact possible 
to complete the argument for situations that have not yet been taken into account. Let 
us consider a particularly bad situation, where at a time T~ two splitting processes take 
place, at the points a1 and a2. 

Then we can consider (in comparison with equation (3.2)) a representation 

x = X ; ( l -  U )  + X f U  + 2  

y = y;( l -  U )  + Y f U  +p 
w = Wi(1 -U)+ W f U +  G 
z = Zi(1 - U )  + Z f U  +i 

O S U S 7 7  

O G a C a ,  

a1 S a s  a 2  

a 2 s a s 7 r .  

The properties of y ,  and z, are the same as before, while it is clear that for w it results 
that 

a', w, (a) = w :: ( U )  + x:, (a,) 6 (a - a1) - xi (  az) 6 (a - a2). 

Then y ,  w and z are expanded on the basis given in (3.7) and all the procedure is as 
before; in particular, the terms of type S compensate. In calculating the determinant 
an evident adaptation of the regularisation procedure yields A = 1. The other compensa- 
tions, after integration over X ,  Y, W and 2, also hold and the remaining contributions 
of the singularities of the second derivatives finally give rise to a term 

T2(a1, a 2 1  = T2(C+l) + T 2 ( 4  
where T,(a,) is defined as in (3.21). 

So in conclusion we get 
~ = ~ r ( u , )  erc~,) 

which is the factorisation required to allow the exponentiation as in equation (4.1). 
The second point concerns the regularisation in calculating the functional deter- 

minant A. One can ask how much the result depends on the particular regularising 
procedure. Here a general argument is not presented, but the particular regularisation 
previously used is changed, taking instead of equation (3.17), 

where K = p / a .  Now taking the limit p + 0, we have that 
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Looking at (3.16), we see that in any case only a term of the kind ( n - - ( ~ ~ - p , , )  is 
obtained and  so the compensation that finally yields A = 1 holds to terms exponentially 
vanishing in the regularising parameter g. The same result is obtained through a 
Gaussian regularisation, 

1 1'" +C ( - a / a ~ ) "  exp(-KI') = + ( - ~ / ~ K ) ' O , ( O ,  ePK)  = g(K). 
I I 

Applying now the Jacobi imaginary transformation [ 131 to the function 03, we obtain 

g(K) =~(-a/aK)"(7T/K)"'O3(0, eXp(-7T2/K)). 

In this case the parameter K must be identified with g ' / a 2  and, expanding the O,, we 
easily reach the result that a formula like (Al)  holds and so the same final conclusions 
may be drawn. 

So the really significant fact is that, when the cutoff is introduced, the number of 
modes is proportional to a. This is relevant for a related problem: the actual calculation 
of the determinant appears dependent on a normalisation of the basis functions, which 
was explicitly fixed in (3 .7) .  A change in the normalisation such as qn + 4, = C,,(b)q, 
induces a change in the functional integration variables X ,  ( (T) +. X,( a ) /  C,( b )  and so 
on. In turn, if the functional variable has a / p  modes we get a factor [ C,( b)]-"'" so 
that the whole determinant (3.15) is changed, remembering the values taken by a, by 

[ C, ( b)](--7ifuo+Po)/p 

so, taking correctly into account the regularisation of the 1 modes, the result A = 1 is 
obtained independently of the basis. 
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